Exam I, Math 530, Fall 2014

Ayman Badawi

QUESTION 1. NOTE THAT THE GOAL of IN CLASS EXAM is to make sure that students know how to make use of class results, theorems and so on.
(i) Let G be an abelian group such that $|G|=n$ where $n \neq p^{m}$ for some prime p of R. Given that for every proper divisor of n, say d (note $d \neq n$), G has a cyclic subgroup of order d. Prove that for every proper divisor d of n, G has a unique subgroup of order d.
solution. Since $n \neq p^{m}$, we conclude that $n=i j$ such that $i, j \neq 1$ and $\operatorname{gcd}(\mathbf{i}, \mathbf{j})=\mathbf{1}$. Thus G has cyclic subgroups of order i and of order j. Thus G has an element, say a, of order i and \mathbf{G} has an element, say \mathbf{b}, of order j. Since $a b=b a$ and $g c d(i, j)=1$, we know that the order of $a b=i j$. Thus G is cyclic. Hence we know that for every proper divisor d of n, G has a unique subgroup of order d.
(ii) Give me an example of an abelian group G such that $|G|=n=p^{m}$ for some prime p and for every proper divisor of n, say $d(d \neq 1, d \neq n), G$ has at least two cyclic subgroups of order d.
solution. Let $n=3^{2}$ and $G=\left(Z_{3},+\right) \times\left(Z_{3},+\right)$. Then $d=3$ is the only proper divisor of $9(d \neq 1, d \neq 9)$ and G has at least 2 distinct subgroups, namely: $Z_{3} \times\{0\}$ and $\{0\} \times Z_{3}$
(iii) Let G be a group of order p^{3} for some prime p. Prove that G is either abelian or $|C(G)|=p$ (note that $C(G)$ denotes the center of G).
Solution. By Cauchy we know $|C(G)|=p$ or p^{2} or p^{3}. If $|C(G)|=p^{3}$, then G is an abelian group. Assume $|C(G)|=p^{2}$. Then we know that $G / C(G)$ is cyclic (since $|G / C(G)|=p$), hence we know that G must be abelian, and thus $|C(G)|=p^{3}$, a contradiction. Thus if G is not abelian, then $|C(G)|=p$
(iv) Let G be a group of order p^{3} for some prime p. Prove that G is abelian or G has a normal proper subgroup D of G such that G / D is abelian. [Hint: you may use (ii)].
solution. By (ii), we know that if G is not abelian, then $|C(G)|=p$. Since $|G / C(G)|=p^{2}$, we know that $\mathbf{G} / \mathbf{C}(\mathbf{G})$ is abelian.
(v) Let $(G, *)$ be a group and (D, δ) be an abelian group. Given f is a group homomorphism from G into D. Let $a, b \in G$. Prove that $a * b=b * a$ or $(b * a)^{-1} *(a * b) \in \operatorname{Ker}(f)$.
Solution. Let $a, b \in G$. Assume that $a * b \neq b * a$. Since D is abelian, $f(a * b)=f(a) \delta f(b)=f(b) \delta f(a)=$ $f(b * a)$. Since $f(a * b)=f(b * a)$, we have $f(b * a)^{-1} \delta f(a * b)=e_{D}$. We know $f(b * a)^{-1}=f\left((b * a)^{-1}\right)$. Thus $f\left((b * a)^{-1} *(a * b)\right)=e_{D}$. Hence $(b * a)^{-1} *(a * b) \in \operatorname{Ker}(f)$.
(vi) Let G be a group of order 9. Given $f:\left(Z_{45},+\right) \rightarrow G$ is a surjective (onto) group homomorphism. Prove that G is group-isomorphic to $\left(Z_{9},+\right)$ Find $\operatorname{ker}(f)$. Given $f(2)=b \in G$. Let $S=\left\{a \in Z_{45} \mid f(a)=b\right\}$. Find the set S. Solution. Since $Z_{45} / \operatorname{Ker}(f)$ is group-isomorphic to G and Z_{45} is cyclic, we conclude that $Z_{45} / \operatorname{Ker}(f)$ is cyclic and hence G is cyclic. Since Since $Z_{45} / \operatorname{Ker}(f)$ is group-isomorphic to G and $|G|=9$. We conclude $|\operatorname{Ker}(f)|=5$. Since Z_{45} is cyclic, it has exactly one subgroup of order 5. Thus $\operatorname{Ker}(f)=\{0,9,18,27,36\}$. Let $K: Z_{45} / \operatorname{Ker}(f) \rightarrow G$ such that $K(a+\operatorname{Ker}(f))=f(a)$. Then we know that K is an isomorphism. Since $f(2)=b$, we have $K(2+\operatorname{Ker}(f))=f(2)=b$. Thus $S=2+\operatorname{Ker}(f)=\{2,11,20,29,38\}$
(vii) Let G be a group of order n. Let M be the set of all non-isomorphic-groups of order n. Prove that M is a finite set.
Solution. Let D be a group of order n. Then we know that D is group-isomorphic to a subgroup of S_{n}. Since S_{n} has finitely many subgroups of order n (since S_{n} is a finite group), we conclude that the number of all non-isomorphic groups of order n is a finite number.
(viii) Suppose $|G|=22$ such that G has a subgroup of order 11 and a normal subgroup of order 2. Without using Sylows Theorem, prove that G is group-isomorphic to $\left(Z_{22},+\right)$.
Solution. Let D be a subgroup of G of order 11. Since $[G: D]=|G| /|D|=2$ (i.e. D has only two left cosets), we conclude that D is a normal subgroup of G of order 11. Let H be a normal subgroup of G of order 2. Then $H \cap D=\{e\}$. Let $f: G \rightarrow G / D \times G / H$ such that $f(a)=(a * D, a * H)$. We know that G is an isomorphism. Since $|G / D|=2$ and $|G / H|=11$, we conclude that $G / D \equiv Z_{2}$ is cyclic and $G / H \equiv Z_{-11}$ is cyclic. Thus $G \equiv Z_{2} \times Z_{11} \equiv Z_{22}$.

Faculty information

